20010102Computer AlgebraSystem and TutorialModes (ALGEBRA FX 2.0 PLUS only)7-1 Using the CAS (Computer Algebra System) Mode7-2 Algebra Mode7-3 Tutoria
200101027-1-9Using the CAS (Computer Algebra System) Modeu To save a calculation history to solution memory (Save)On the initial solution memory scree
20010102• 6(DISP) is disabled when there is no data in Solution memory.•To display the next recordPress 6(NEXT).•To display the previous recordPress 1
200101027-1-11Using the CAS (Computer Algebra System) ModeAlgebra Command ReferenceThe following are the abbreviations used in this section.• Exp ...
20010102u solveFunction: Solves an equation.Syntax: solve( Eq [,variable] [ ) ]solve( {Eq-1,..., Eq-n}, {variable-1,...,variable-n} [ ) ]Example To so
200101027-1-13Using the CAS (Computer Algebra System) Modeu trigToExp (trigToE)Function: Transforms a trigonometric or hyperbolic function to an expon
20010102u combine (combin)Function: Adds and reduces rational expressions.Syntax: combine( {Exp/Eq/Ineq/List/Mat/Vect} [ ) ]Example To reduce the frac
20010102u cExpand (cExpnd)Function: Expands xth root of imaginary number.Syntax: cExpand( {Exp/Eq/Ineq/List/Mat/Vect} [ ) ]Example To expand 2i1(TR
20010102u diffFunction: Differentiates an expression.Syntax: diff( {Exp/List} [, variable, order, derivative] [ ) ]diff( {Exp/List}, variable [, order
20010102u ΣFunction: Calculates a sum.Syntax: Σ( {Exp/List}, variable, start value, end value [ ) ]Example To calculate the sum as the value of X in X
20010102u tanLine (tanLin)Function: Returns the expression for a tangent line.Syntax: tanLine( {Exp/List}, variable, variable value at point of tangen
200101027-1-1Using the CAS (Computer Algebra System) Mode7-1 Using the CAS (Computer Algebra System)ModeOn the Main Menu, select the CAS icon to enter
20010102u lcmFunction: Obtains the least common multiple of two expressionsSyntax: lcm( {Exp/List}, {Exp/List} [ ) ]Example To obtain the least common
20010102u exchange (exchng)Function: Exchanges the right-side and left-side expressions.Syntax: exchange( {Eq/Ineq/List} [ ) ]Example To exchange the
20010102u absExpand (absExp)Function: Divides an expression that contains an absolute value into two expressions.Syntax: absExpand( {Eq/Ineq} [ ) ]Ex
20010102u clear (clrVar)Function: Clears the contents of specific equation (A to Z, r, θ ).*1Syntax: clear( variable [ ) ]clear( {variable list} [ ) ]
20010102k List Calculation Commands [OPTN]-[LIST]u DimFunction: Returns the dimension of a list.Syntax: Dim ListExample To determine the dimension of
200101027-1-24Using the CAS (Computer Algebra System) Modeu MaxFunction: Returns the maximum value of an expression or the elements of a list.Syntax:
20010102Example To determine the mean of the elements in list {1, 2, 3} when theirfrequencies are {3, 2, 1}K1(LIST)b(CALC)e(Mean)!*( { )b,c,d!/( } ),!
20010102u ProdFunction: Returns the product of the elements in a list.Syntax: Prod ListThe list must contain values or mathematical expressions only.
20010102u A ListFunction: Returns a list whose elements are the differences between the elements ofanother list.Syntax: AAAAA List ListThe list must c
20010102u SeqFunction: Generates a list in accordance with a numeric sequence expression.Syntax: Seq( Exp, variable, start value, end value, [incremen
20010102If all the result does not fit on the display, use the cursor keys to scroll it.k Inputting List DataList: {element, element, ..., element}•E
20010102u SortAFunction: Sorts the elements of a list into ascending order.Syntax: SortA( List [ ) ]The list must contain values or mathematical expre
20010102u List→Mat (L→Mat)Function: Converts lists into a matrix.Syntax: List→Mat( List [ , ... ,List ] [ ) ]Example To convert list {3, 5} and list {
20010102k Matrix Calculation Commands [OPTN]-[MAT]u DimFunction: Returns the dimensions of a matrix.Syntax: Dim MatExample To determine the dimensions
20010102u EigVcFunction: Returns the eigenvector of a matrix.Syntax: EigVc MatExample To determine the eigenvector of the matrix below3413K2(MAT)b(CAL
20010102u RrefFunction: Returns the reduced row echelon form of a matrix.Syntax: Rref MatExample To determine the reduced row echelon form of the matr
20010102u LUFunction: Returns the LU resolution of a matrix.Syntax: LU( Mat, lower memory, upper memory)Example To determine the LU resolution of the
20010102u Augment (Augmnt)Function: Combines two matrices.Syntax: Augment( Mat, Mat [ ) ]Example To combine the two matrices below12 5634 7 8K2(MAT)c
20010102Example To create a 2 × 3 matrix, all of whose entries are XK2(MAT)c(CREATE)e(Fill)v,c,d w XXXXXXu SubMatFunction: Extracts a specific section
20010102u DiagFunction: Extracts the diagonal elements of a matrix.Syntax: Diag MatExample To extract the diagonal elements of the matrix below1234K2(
20010102u SwapFunction: Swaps two rows of a matrix.Syntax: Swap Mat, row number 1, row number 2Example To swap row 1 with row 2 of the following matri
200101027-1-3Using the CAS (Computer Algebra System) Modek Inputting Vector DataVector: [component, component, ..., component]•Components should be se
20010102u Row+Function: Adds one row of a matrix and to another row.Syntax: Row+( Mat, row number 1, row number 2 [ ) ]Example To add row 1 of the mat
20010102k Vector Calculation Commands [OPTN]-[VECT]u DimFunction: Returns the dimension of a vector.Syntax: Dim VectExample To determine the dimension
20010102u UnitVFunction: Normalizes a vector.Syntax: UnitV VectExample To normalize a vector (1 2 3)K3(VECT)b(CALC)f(UnitV)!+( [ )b,c,d!-( ] )wu Angle
20010102u Vect→List (V→List)Function: Converts a vector into a list.Syntax: Vect→List VectExample To convert vector (3 2) into a listK3(VECT)d(VECT→)b
199904017-2 Algebra ModeThe CAS Mode automatically provides you with the final result only. The Algebra Mode, onthe other hand, lets you obtain interm
199904017-3 Tutorial ModeOn the Main Menu, select the TUTOR icon to enter the Tutorial Mode.k Tu torial Mode Flow1. Specify the expression type.2. De
19990401The following shows the formulas available for each type of expression.Linear Equation — 6 Types• AX = B • X + A = B• AX + B = C • AX + B = CX
19990401k Defining the ExpressionIn this step, you specify coefficients and define the expression. You can select any of thethree following methods fo
19990401k Specifying the Solve ModeYou can select one of the following three solve modes for the displayed expression.•{VRFY} ... {Verify Mode}In thi
199904017-3-5Tut orial ModeYou can press 4(MANU) to change to the Manual Mode or 5(AUTO) to change to theAuto Mode.Example To solve 4X = 8 in the Ver
20010102kkkkk Manual Formula and Parameter InputYou can use the function menus, K key, and J key in combination to input formulas andparameters as de
199904017-3-6Tut orial Modek Manual ModePress 5(MANU) to enter the Manual Mode.As with the Algebra Mode, the screen is divided between an input area
199904017-3-7Tut orial ModeExample 4X2 = 16True (X = 2, X = – 2)Besides “TRUE” the messages shown below can also appear as the result of verification
19990401200111017-3-8Tut orial Modek Auto ModePress 6(AUTO) to enter the Auto Mode.In the Simultaneous Equation Mode, you must also select SBSTIT (
19990401 ∫ab f(x)dx = F(b) – F(a)7-4-1Algebra System Precautions7-4 Algebra System Precautions• If an algebraic operation cannot be performed for some
20010102
20010102Example To assign M to row 1 column 2 of variable A when the matrixis assigned to itah(M)aav(A)!+( [ )b,c!-( ] )wExample To recall the value o
20010102k Function Memory and Graph MemoryFunction memory lets you store functions for later recall when you need them.With graph memory, you can sto
20010102k Answer (Ans) Memory and Continuous CalculationAnswer (Ans) memory and continuous calculation can be used just as with standardcalculations.
20010102SET UP ItemsuuuuuAngle ... Unit of angular measurement specification• {Deg}/{Rad} ... {degrees}/{radians}uuuuuAnswer Type ... Result range spe
Comentarios a estos manuales